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1 Introduction

Physically based shading models are now standard for real-time rendering and the video game industry
now has the promise of using powerful GPUs thanks to the new generation consoles, the PlayStation
4 and Xbox One. Compared to previous generation consoles, the GPUs now available can use far
more ALU instructions1, since they have, in relative terms, many more instruction units than texture
units. However, if a rendering pipeline is designed based on the old architecture, it can’t utilize the
maximum performance of the GPU. Therefore, higher resolutions, faster framerates and higher quality
post-processing can be candidates to utilize the GPU’s capability. On the other hand, in typical
shading (e.g. both forward and deferred) algorithms, including physically based shading, there are a
lot of texture samples, fetching information such as albedo, reflectance, normal, height, roughness and
ambient occlusion maps. Additionally, they require more texture samples from the G-Buffer, image-
based lighting, screen-space lighting and more global illumination information. Therefore, considering
the ALU instruction and memory bandwidth ratio, using a more complex shading model is a good
candidate to use this extra power. Specifically, the old normalized Blinn-Phong model only uses 20 to
30 instructions, though new generation consoles are capable of using 100 or more instructions depending
on shading complexity.

2 Specular Model

Nowadays, there is a popular physically based model which uses the microfacet model with the GGX
(Trowbridge-Reitz) distribution for D instead of Blinn-Phong, the Schlick approximation for F and
Smith shadowing and masking function for G instead of Torrance-Sparrow V-cavity model in Equa-
tion 1.

fr(l, e) =
D(l, e)F (l, e)G(l, e)

4(n · e)(n · l)
. (1)

Although the GGX and Smith functions have been frequently referenced and details are easy to find,
for the Fresnel term F , the Schlick approximation is still widely used because it is a computationally
inexpensive function and easy to implement. However, do we still have to approximate the function
with a powerful GPU? Figure 1 shows the difference between the original Fresnel equation and the
Schlick approximation with different refractive indices.

Equation 2 is a Fresnel equation using the reflectance instead of a refractive index.

F (θ) = 0.5

{(
(
√
f0 + 1) cos θ + (

√
f0 − 1)α

(
√
f0 + 1) cos θ − (

√
f0 − 1)α

)2

+

(
(
√
f0 − 1) cos θ + (

√
f0 + 1)α

(
√
f0 − 1) cos θ − (

√
f0 + 1)α

)2
}
, (2)

where α =

√
1− (

√
f0−1)2(1−cos2 θ)

(
√
f0+1)2

.

1Trying to reduce the number of GPRs is still very important for performance because of multi-threading in the GPU.
More complex shaders can increase the number of GPRs.
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Figure 1: The yellow curve is calculated with the Fresnel equation for aluminum at 610nm. The green
curve is calculated with the Schlick approximation for aluminium at 610nm. Blue (Fresnel) and Purple
(Schlick) are curves for a refractive index of 1.5.

This equation is more useful than the original Fresnel equation, because a reflectance (map) is more
intuitive than a refractive index and easier for artists to handle. However, this equation doesn’t work
correctly for a large f0. For real world materials, a large f0 isn’t just a large real number, but a complex
number with a large imaginary part, as it is calculated from a complex refractive index. In this case,
the Fresnel equation behaves differently, compared to using a real reflectance value, but the Fresnel
equation with a complex refractive index is much more complicated than Equation 2. Therefore, it is
difficult to directly use the Fresnel equation in a shader, even with new generation consoles. Figure 2
shows this problem.

Since the behaviour of the Fresnel equation is complicated, we need to implement the Fresnel
equation with a complex refractive index or a complicated approximation to reproduce the behavior.
Therefore, we tried to improve the accuracy with the most frequently used refractive index of 1.5, using
the spherical Gaussian approximation shown in Equation 3,

F (θ) = f0 + (1− f0) · 2−9.60232 cos8 θ−8.58092 cos θ. (3)

As shown in Figure 3, the Schlick approximation is a good enough appproximation, although there
is a slight difference to the size of the specular highlight. However, the Schlick approximation still
has a problem with complex refractive indices with a large imaginary part. If you need to improve
quality in these cases, you can use [9] with a complex refractive index as a parameter. In these course
notes, the Schlick approximation is used for the F term, though you can choose better approximations
including the improved spherical Gaussian.
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Figure 2: The blue curve is the Fresnel equation with a refractive index of 1.3+7.48i. The purple curve
is Equation 2 with the real reflectance from the same refractive index.
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Figure 3: All curves are calculated with a refractive index of 1.5. The blue curve is the Schlick ap-
proximation, purple is the Fresnel equation, yellow is the improved spherical Gaussian. The teapot on
the left is rendered with the improved spherical Gaussian and the right one is rendered with the Schlick
approximation. The sizes of specular highlight are slightly different.
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3 Diffuse Model

In contrast with specular models, physically based diffuse models have relatively little attention paid
to them. However, from a physically based perspective, when you use a microfacet model for specular,
the same microfacet model should be used for a diffuse model. Our goal in this section is to design a
physically based diffuse model using the same microfacet model as specular.

One of most famous microfacet diffuse models, called Oren-Nayar [10], is a good model as a starting
point. Oren-Nayar has the well-balanced characteristics of a microfacet diffuse model, which are view
dependency, a matte-look depending on surface roughness and a retro-reflective effect. However, Oren-

Nayar has a few problems. The first problem is that the normal distribution function isD(θl) = c·e−
θ2l
2α2 ,

not GGX. The second problem is that the G term is Torrance-Sparrow V-cavity model, not the Smith
shadowing and masking function. The third one is that Oren-Nayar doesn’t conserve energy with
specular on each facet and this means that Oren-Nayar is not a physically based model.

First, this note discusses how to design a microfacet model. As mentioned in the previous section,
designing a specular reflectance model is easy with the microfacet model. Simply, you choose appropri-
ate D, F and G terms and substitute them into Equation 1. In the case of specular makes this an easy
equation to solve, as you only take the reflection in the view direction into account. However, since
diffuse reflects incident light in all directions, you need to take all facets into account and a reflectance
model is much more complex. On the assumption that all facets are Lambertian, you need to calculate
Equation 4,

fr(n, l, e) =
1

π(n · l)(n · e)

∫
Ω

(m · l)(m · e)D(m)Fdiff(m, l, e)G(m, l, e)dωm, (4)

where m is microfacet normal. This equation doesn’t have a closed form unless D, F and G
terms are very simple. Therefore, as a first step, we will try to improve Oren-Nayar to satisfy energy
conservation - which means taking Fresnel into account, a problem first addressed in [15].

The equation that we will use is the improved Oren-Nayar from [4],

Lr =



ρ
πE0

[
(n · l)(1.0− 0.5 σ2

σ2+0.65
) +

(
(0.45 σ2

σ2+0.09
) (e · l− (n · e)(n · l)) min(1, n·l

n·e)
)]

, if (e · l− (n · e)(n · l)) ≥ 0
ρ
πE0

[
(n · l)(1.0− 0.5 σ2

σ2+0.65
) +

(
(0.45 σ2

σ2+0.09
) (e · l− (n · e)(n · l))

)]
, otherwise.

(5)

Intuitively, when the surface gets rougher, a microfacet model behaves like a blur filter. When
roughness, σ, is zero, the model becomes Lambertian with the Fresnel effect. When roughness increases,
the Fresnel effect in the model must get blurrier. Moreover, in Equation 5, the (1.0− 0.5 σ2

σ2+0.65
) term

works as a factor to attenuate the Lambertian (n·l) term by roughness. The (0.45 σ2

σ2+0.09
) term works as

an attenuation factor for the rest of the equation, which is the view-dependent component. According
to [15] and [11], the diffuse Fresnel component2 shown in Equation 6 can be added to Oren-Nayar,

Fdiff(l, e) =
21

20
(1− f0)

(
1− (1− n · l)5)

) (
1− (1− n · e)5)

)
. (6)

Then, Oren-Nayar with Equation 6 becomes:

2 1
π

is removed from the original model, because it is a Lambertian model, not a Fresnel component
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Figure 4: Comparison between different diffuse models. The teapot on the left is rendered with the
Lambert model. The middle one is with the improved Oren-Nayar model. The right one is with the
improved Oren-Nayar model with Fresnel (Equation 7). All teapots only have the diffuse component
rendered.
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Figure 5: Oren-Nayar and Oren-Nayar with Fresnel(Equation 7) model analysis. Blue (σ = 0) and
yellow (σ = 1) curves are Oren-Nayar. Purple(σ = 0) and green(σ = 1) curves are Oren-Nayar with
Fresnel. From the left, cos θe is 0, 45 and 80 degrees respectively. cosφ is 0 degrees and f0 is 0.04.

Lr =
ρ

π
E0(1− f0)

[
Fdiff(l, e)(n · l)(1.0− 0.5

σ2

σ2 + 0.65
)+(

(0.45
σ2

σ2 + 0.09
) (e · l− (n · e)(n · l)) min(1,

n · l
n · e

)

)]
. (7)

Figure 4 shows the rendering results with Equation 7 and the graphs in Figure 5 show analysis of
different models.

The problem is that this new model is still a compromise. The Fresnel component is added to the
geometry surface instead of the microfacet. Ideally, it should be added to each microfacet. Additionaly,
the D and G terms are different from the terms used in the specular model. As mentioned earlier, they
should be the same terms. To solve this problem, we have to derive a new model from scratch instead
of using existing models. To that end, we analyzed the diffuse microfacet model in Equation 4, and
simply integrated the model numerically. Figures 6 to 10 analyze the new model and compare it to
the original Oren-Nayar and Oren-Nayar with Fresnel.

This model doesn’t have a closed form for the given D, F and G terms3. So we need to bake this
model to textures or fit it to an equation to implement this model in a shader. However, if this model

3This time, the model uses GGX for the D Term, the Schlick approximation for the F term and Smith Height-Correlated
Masking and Shadowing Function introduced in [6] for the G term.
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Figure 6: Comparison with different roughness values. The blue curve is Oren-Nayar, the purple is
Oren-Nayar with Fresnel and the green is the new model. As roughness increases, the shading result
gets more flat. In addition, even with roughness at 1.0, Oren-Nayar with Fresnel (purple)has a sharp
fall-off at grazing angles, caused by Fresnel. However, the new model (green) doesn’t exhibit such an
effect.
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Figure 7: Comparison with different settings. With these settings, three models show completely dif-
ferent results. Discontinuities in Oren-Nayar based models (blue and red) are caused by the Torrance-
Sparrow V-cavity model, but the new model doesn’t have such a discontinuity as it uses the Smith
shadowing and masking function.
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Figure 8: This graph is sliced by θe instead of θl. The purple (Oren-Nayar with Fresnel) and green
(new model) curves completely overlap. This graph shows simple results which are that the original
Oren-Nayar has no Fresnel effect at all, and the others have the Fresnel effect.
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Figure 9: These graphs are also sliced by θe with different roughness settings. The three models show
completely different results. The original Oren-Nayar (blue) doesn’t have the Fresnel effect at all. Oren-
Nayar with Fresnel (red) has a strong Fresnel effect regardless of roughness. The new model (green)
has an appropriate Fresnel effect depending on roughness.
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Figure 10: This graph has an out-of-plane setting and has θl at close to grazing angles. Again, the
discontinuities in the original Oren-Nayar (blue) and Oren-Nayar with Fresnel (red) disappear in the
new model (green). For Oren-Nayar with Fresnel, the Fresnel effect is too strong and causes strongly
decreasing shading results at grazing angles for θe despite a very rough material (σ = 0.8). The other
models don’t have such results.
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is directly baked to into textures, they need three vectors and two scalars as parameters4, even though
f0 can be factored out. Therefore, this model would be difficult to implement as a texture lookup.
Moreover, as mentioned earlier, recent shaders may be texture-bound, thus we should be able to afford
to implement this model as a fitted model, even if the fitted model is complicated. As a result, we
tried to find a model and found the following approximation:

Lr(e, l, σ, f0) =
21

20π
(1− f0) (Fr(e, l, σ)Lm(l, σ) + Vd(e, l, σ)Bp(e, l)) , (8)

Fr(e, l, σ) =

(
1− 0.542026σ2 + 0.303573σ

σ2 + 1.36053

)(
1− (1− n · e)5−4σ2

σ2 + 1.36053

)
((
−0.733996σ3 + 1.50912σ2 − 1.16402σ

)
(1− n · e)

(1+ 1
39σ4+1

)
+ 1
)
,

Lm(l, σ) =
(
max(1− 2σ, 0)

(
1− (1− n · l)5

)
+ min(2σ, 1)

) (
(1− 0.5σ)n · l + 0.5σ(n · l)2

)
,

Vd(e, l, σ) =

(
σ2

(σ2 + 0.09) (1.31072 + 0.995584(n · e))

)(
1− (1− n · l)

(
1−0.3726732(n·e2)

0.188566+0.388410n·e

))
,

Bp(e, l) =

{
1.4(n · e)(n · l) (e · l− (n · e)(n · l)) , if (e · l− (n · e)(n · l)) < 0

e · l− (n · e)(n · l), otherwise.

If you think this model is too complicated to implement into your rendering engine, you can simplify
some terms in Equation 8. For example, this model uses rational interpolations and a cubic function
and these functions can be simplified to linear functions or quadratic functions at the sacrifice of
accuracy.

4 Limitations and results of the new diffuse model

There are limitations in this fitted model. The first limitation is that the accuracy of the fitted model
at grazing angles for both view and light vectors is not enough. This may cause some visual differences
on the edges. The second limitation is that roughness values are limited from 0 to 1. The last one may
not be a limitation, though this model shouldn’t be used to compute an AmbientBRDF table which
was introduced in [3]. In that course, the diffuse component in the AmbientBRDF was not stored in
the AmbientBRDF texture for performance reasons. Then, [4] described how to compute the diffuse
component for image based lighting with Oren-Nayar without the diffuse AmbientBRDF texture.
However, new generation consoles have enough computational capability to store integrated diffuse
components into the AmbientBRDF texture. Therefore in [5], the new diffuse model was introduced
for image based lighting with an AmbientBRDF. That model can be also used for the new model
shown in Equation 8 with the AmbientBRDF table which is computed using Equation 4. However, as
mentioned, the fitted model shouldn’t be used for this purpose, numerical integration should be used
to compute the AmbientBRDF for better accuracy.

4Three vectors in the model can be reduced to three scalars by projecting the model onto θl, θe and φ. Even with this
operation, we still need four scalars including roughness, and it is difficult to bake the model into one volume texture.
However, using BTF-like techniques, the model can be baked to multiple textures, if necessary.
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Figure 11 to Figure 15 describe observations of the fitted model. Figure 16 and 17 show visual
comparisons between different diffuse models.

In Figure 17, you will notice that the results of the new diffuse model are darker, especially with
rougher settings, than the other models. This is caused by the diffuse model taking Fresnel on each
facet into account. All facets have a specular component, which doesn’t contribute to the model and
in fact causes a decrease in the diffuse component to conserve energy. As a result, the new diffuse
model gets darker than models which don’t take Fresnel on each facet into account. This is another
effect of Fresnel for diffuse, not only on edges (at grazing angles).

5 Conclusion

From a physically based perspective, the same microfacet model should obviously be used for diffuse
and specular. New consoles have enough computational power to implement such complex models.
These course notes describe how to design a model with given functions. If you use some different
models to derive a new reflectance model with the microfacet model, you should care about not only
a specular model, but also a diffuse model.
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Figure 11: Evaluations of the fitted model (blue) compared to the ground truth (orange dash) with
different parameters. The blue curve is the fitted model and the orange dash is numerically integrated.
As shown in these graphs, the model fits well for these settings.
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Figure 12: Other observations with different parameters. There are slight differences with these settings.
However the fitted model still represents characteristics of the new model well.
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Figure 13: This graph is sliced by θe instead of θl. The fitted model accurately traces the new model
even with a different parametrization.
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Figure 14: These graphs are also sliced by θe with different roughness settings. As shown in the left
graph, there are small errors at grazing angles in some cases.
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Figure 15: This graph has an out-of-plane setting and θl at close to grazing angles. As shown in this
graph, when both θl and θe are close to grazing angles, the error increases. This is the one of the
limitations of this model.
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Figure 16: Model comparisons with a character and multiple lights. From the left, the diffuse shading
models are Lambert, Oren-Nayar with Fresnel and the (fitted) new model respectively. The specular
shading model is same for all images. Differences between the three models are easily distinguishable.
With the Lambert model, shading gradually varies. However, with other two models, shading is flatter
and suddenly drops at grazing angles. This effect is more strongly apparent for the new model.
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Figure 17: Model comparisons with simple teapots with different roughness values. From the left, the
diffuse shading models are Lambert, Oren-Nayar with Fresnel and the (fitted) new model respectively.
The specular shading model is same for all teapots. With the Lambert model, only the specular highlight
varies according to roughness. The new model has a relatively more matte (flat) look than Oren-Nayar
with the same roughness value. Moreover, the Fresnel effect on the edge rapidly disappears even with
a roughness of 0.05 for the new model, though it remains for Oren-Nayar with Fresnel with the same
roughness.
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